Preparation and properties of vancomycin-loaded PLA-PEG-PLA microspheres by electrostatic spray technology

Author:

Tang Ruimin1,Feng Yan2,Chen Rongying1,Yuan Minglong1,Yuan Mingwei1,Li Hongli1,Jiang Dengbang1

Affiliation:

1. National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials , 145309 Yunnan Minzu University , Kunming 650500 , China

2. Yunnan ICL YTH Phosphate Research and Technology Center CO., LTD , Kunming 650100 , China

Abstract

Abstract Vancomycin in sustained release still needs to be investigated. Polylactic acid (PLA) was widely used in the biomedical field for its good biocompatibility, especially in the field of controlled drug release. In this study, polyethylene glycol (PEG) was used to modify PLA to improve the hydrophilicity of the material. The synthesis of the block copolymers was proven by infrared and nuclear magnetic characterization and the hydrophilicity was tested. Vancomycin was immobilized by coaxial electrospray, and PLA-PEG6000-PLA was used as the shell layer. The parameters of coaxial electrospray under this material were explored, and the effects of concentration, voltage and temperature on the formation of microspheres were systematically studied. The optimum parameters were determined as follows: concentration 20 wt%, temperature 35 °C and voltage 14 kV. The maximum encapsulation rate and drug loading were calculated to be 89.54 ± 1.22 % and 15.33 ± 0.97 %, respectively, and the cumulative release of drug-loaded microspheres was less than 45 % in 24 h with a slow releasing time of more than one month. The drug loaded microspheres showed good sustained release and good control of burst release.

Funder

Yunnan minzu University 2022 Master’s Research Innovation Fund Project

National Natural Science Foundation of China

Yunnan Ten Thou-sand Talents Program-Special Program for Top Young Talents

Yunnan Province Basic Research Project

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3