In situ prepared composite of polypyrrole and multi-walled carbon nanotubes grafted with sodium polystyrenesulfonate as ammonia gas sensor with wide detection range

Author:

Zhao Huijie1,Hong Lijie1,Han Kaiyue1,Yang Mujie1,Li Yang1

Affiliation:

1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China

Abstract

Abstract NH3 gas sensors with good sensing performance including wide detection range at room temperature are highly desirable for a large variety of applications. In this work, multi-walled carbon nanotubes grafted with sodium polystyrenesulfonate (PSSNa-MWCNTs) are prepared via a controlled radical polymerization and show good dispersibility in water. The composite of polypyrrole with PSSNa-MWCNTs (PPy/PSSNa-MWCNT) is prepared by in situ vapor phase polymerization of pyrrole to fabricate NH3 gas sensors. Effects of the content of PSSNa-MWCNTs, the concentration of the oxidant, polymerization time and temperature on the gas sensing properties of the composite are investigated at room temperature. It is revealed that the composite shows much higher response magnitude than the single components. Under optimal conditions, PPy/PSSNa-MWCNT exhibits very wide detection range from 5 to 2000 ppm, and good sensing linearity over 5–20 ppm and 20–100 ppm, respectively. Moreover, the electrical responses of the composite towards NH3 gas are fast (response and recovery time to 1000 ppm NH3 gas are 16.7 s and 143.6 s, respectively), reproducible and highly selective. The interactions between PPy and MWCNTs promote the charge transfer in the composite, leading to good sensing performance and exhibiting a synergetic effect.

Funder

National Natural Science Foundation of China

Basic Public Welfare Research Program of Zhejiang Province, China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3