Adansonia digitata L. leaf extract attenuates lead-induced cortical histoarchitectural changes and oxidative stress in the prefrontal cortex of adult male Wistar rats

Author:

Atuadu Vivian12,Benneth Ben-Azu3ORCID,Oyem John4,Esom Emmanuel12,Mba Chris12,Nebo Kate5,Ezemeka Godswill1,Anibeze Chike1

Affiliation:

1. Department of Anatomy, Faculty of Basic Medical Sciences , College of Medicine, Enugu State University of Science and Technology (ESUT) , Enugu , Enugu State , Nigeria

2. Department of Anatomy, Faculty of Basic Medical Sciences , College of Medicine, University of Nigeria Enugu Campus (UNEC) , Enugu , Enugu State , Nigeria

3. Department of Pharmacology, Faculty of Basic Medical Sciences , PAMO University of Medical Sciences , Port Harcourt , River States , Nigeria

4. Department of Human Anatomy, Faculty of Basic Medical Sciences , University of Port Harcourt , Choba , Rivers State , Nigeria

5. Department of Anatomy, Faculty of Basic Medical Sciences , University of Ilorin , Ilorin , Kwara State , Nigeria

Abstract

Abstract Objectives Adansonia digitata L. is popularly known for the management of various neurological diseases in ethno-medicine. Studies have shown that lead toxicity is a possible risk factor for early onset of neurodegenerative disease. Hence, this study was designed to evaluate the effect of A. digitata aqueous leaf extract (ADALE) against lead-induced oxidative stress and histo-architectural changes in the prefrontal cortex of adult Wistar rats. Methods Saline (10 mL/kg), ADALE (500 and 1000 mg/kg) and EDTA (55 mg/kg) were pretreated orally 30 min prior to lead acetate (LA) (120 mg/kg) administration to male Wistar rats (n=7) for 21 days. Thereafter, standard biochemical (superoxide dismutate, catalase, glutathionxe and malondialdehyde), histological (H&E) and histochemical assessment (crystyl fast violet stain for nissil substance) were carried out in the prefrontal cortex. Results ADALE significantly (p<0.05) reversed LA-induced oxidative stress, as evidenced by increased catalase, superoxide dismutase and oxidized glutathione levels, and decreased malondialdehyde concentration in the prefrontal cortex. Also, the increase chromatolysis and neuronal pyknosis of the pyramidal neurons of the prefrontal cortex were significantly attenuated by ADALE. Conclusions The result of this study showed that A. digitata aqueous leaf extract attenuated lead acetate-induced cortical neurodegeneration via inhibition of oxidative stress.

Publisher

Walter de Gruyter GmbH

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3