Partial migration in diadromous fishes drives the allocation of subsidies across the freshwater-marine ecotone

Author:

Saboret Grégoire1,Buckle Duncan J.2,King Alison J.23,Douglas Michael M.24,Crook David A.23

Affiliation:

1. Research Institute for the Environment and Livelihoods , Charles Darwin University , Darwin , 0810, NT , Australia ; Master Biosciences, ENS de Lyon, Département de Biologie , 46 allée d’Italie, 69007 Lyon , France ; Department of Surface Waters, EAWAG, Center for Ecology, Evolution and Biogeochemistry , 6047 Kastanienbaum , Switzerland

2. Research Institute for the Environment and Livelihoods , Charles Darwin University , Darwin , 0810, NT , Australia

3. Centre for Freshwater Ecosystems , La Trobe University , Albury-Wodonga, 3690, New South Wales , Australia

4. School of Biological Sciences , The University of Western Australia , 6009, Western Australia , Australia

Abstract

Abstract Migratory animals can act as cross-boundary subsidies sustaining ecosystem functioning, such as diadromous fishes that migrate between fresh water and seawater and carry nutrients and energy across the freshwater-marine ecotone. Frequency and timing of migration are however highly variable within and among populations. We hypothesized that in catadromous fishes (i.e., diadromous fishes that grow in freshwater and spawn in the sea, such as eels), the import of subsidies by migratory juveniles could outweigh the export of subsidies by adults due to skipped spawning migration. We used the diamond mullet Planiliza ordensis, as a model species, and determined life-history traits using a combination of length-to-age data, acoustic telemetry and otolith (fish ear stone) microchemistry. We used a mass balance approach to model individual mass acquisition and allocation, and extended our model to other life-history strategies. Our results showed high intra-population variation of migratory behaviour in P. ordensis, with few individuals migrating every year to spawn. We estimated that an individual P. ordensis acted as a net 42.6g biomass subsidy in fresh water, representing a retention of more than 50% of the juvenile mass at freshwater entry. Our model predicts that skipped spawning is likely to alter the allocation of subsidies in diadromous species, highlighting the important effects of individual variation in migratory behaviour on fluxes of energy and nutrient at ecosystem scales. We encourage future studies to consider how variation in migratory behaviour is likely to affect the direction and magnitude of biomass fluxes across ecotone boundaries.

Publisher

Walter de Gruyter GmbH

Subject

Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3