Dynamic Behavior of Group 13 Elements in Bromocomplexes as Studied by NQR and NMR

Author:

Tomita Yasumasa1,Ohki Hiroshi1,Yamada Koji1,Okuda Tsutomu1

Affiliation:

1. 1Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Abstract

NMR, NQR, powder X-ray diffraction, DTA and AC conductivity were measured in RMBr4 (R = Ag, Cu; M = Al, Ga) and RM2Br7 (R = Li, Ag; M = Al, Ga). In RMBr4 , the activation energy of Cu+ diffusion was evaluated from 63Cu NMR and was in good agreement with that from 81Br NQR. In CuAlBr4 , the e2Qq/h value of 63Cu NMR and the η value of 27AI NMR changed linearly with decreasing temperature, although the e2Qq/h value of 27AI NMR did not change so much. These temperature dependences are supposed to be due to Cu+ diffusion and not to a variation of the lattice constants. In RM2Br7 , the activation energy was obtained from the spin-lattice relaxation time T1 of 81Br NQR and is ascribed to a modulation of the cation diffusion. The line width of 7Li NMR in LiAl2Br7 was about 5.9 kHz in the low-temperature phase and 0.4 kHz for the high-temperature phase. The 27AlNMR spectrum was broadened by the quadrupole interaction and unchanged up to 400 K, suggesting that diffusion of Li+ ions occurs in the high-temperature phase.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NQRS Data for Al2Br7Li (Subst. No. 0057);Landolt-Börnstein - Group III Condensed Matter;2010

2. NQRS Data for AlBr4Cu (Subst. No. 0019);Landolt-Börnstein - Group III Condensed Matter;2010

3. NQRS Data for AgAl2Br7 (Subst. No. 0007);Landolt-Börnstein - Group III Condensed Matter;2010

4. NQRS Data for AgBr7Ga2 (Subst. No. 0009);Landolt-Börnstein - Group III Condensed Matter;2010

5. Substitution Effect in the Ion Conductor Li3InBr6, Studied by Nuclear Magnetic Resonance;Zeitschrift für Naturforschung A;2002-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3