Crystal Structure and Phase Transition of 4-Aminopyridinium Tetrabromoantimonate(III) as Studied by Bromine and Antimony NQR, Proton NMR, and Single Crystal X-Ray Diffraction

Author:

Hashimoto Masao1,Hashimoto Shinichi1,Terao Hiromitsu2,Kuma Masayuki2,Niki Haruo3,Ino Hiroyuki3

Affiliation:

1. 1Department of Chemistry, Faculty of Science, Kobe University, Nadaku, Kobe 657-8501, Japan

2. 2Department of Chemistry, Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan

3. 3Department of Physics, College of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

Abstract

The crystal structure of the room temperature phase (RTP) of the title compound was determined at 297 K (monoclinic, space group C2/c, a = 1384.2(2), b = 1377.8(3), c = 755.5(2) pm, β = 121.58(1)°). A complicated disorder was found for the cation. A phase transition from the low-temperature phase (LTP) to the RTP was found at (224 ±1) K (Tc). The 1H NMR spectra showed a sharp motional narrowing at ca. T=Tc , indicating the occurrence of a reorientational motion of the cation in the RTP in accord with the disorder. It was found that another reorientational motion is excited in the LTP. Four 81Br NQR lines (132.71, 115.38, 61.54 and 59.31 MHz at 77 K) and two Sb NQR lines (53.78 and 33.76 MHz at 77 K) were found in the LTP, while a single 81Br NQR line was observed at T> 276 K (ca. 121.80 MHz at 300 K). Crystal dynamics are discussed on the basis of the temperature dependence of the NQR, 1H NMR line width, and 1H NMR T1.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3