Abstract
AbstractThe geometrical nonlinear analysis of internally supported nanocomposite plates subjected to a uniformly distributed load is carried out. This study investigates the effects of internal point/column supports on the large deformation bending of nanocomposite plates reinforced by carbon nanotubes (CNTs) with different types of distributions, namely, uniform and two kinds of functionally graded distributions through the thickness of the plates. Two-dimensional displacement field of the plate is approximated by a set of Improved Moving Least Squares (IMLS) functions. The arc-length iterative algorithm with the modified Newton method is employed to obtain the nonlinear response of nanocomposite plates. Convergence studies indicate the validity and effectiveness of the element-free IMLS-Ritz method. The effects of plate thickness-to-width ratio, volume fraction ratio, and plate aspect ratio on the large deformation behavior of nanocomposite plates under various boundary conditions are examined. To the best of the authors’ knowledge, the problem has not been attempted in the open literature.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献