Starting the engine of the powerhouse: mitochondrial transcription and beyond
Author:
Miranda Maria1ORCID, Bonekamp Nina A.2ORCID, Kühl Inge3ORCID
Affiliation:
1. Department of Mitochondrial Biology , Max Planck Institute for Biology of Ageing , Cologne , D-50931 , Germany 2. Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim , Heidelberg University , Mannheim , D-68167 , Germany 3. Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS , Université Paris-Saclay , Gif-sur-Yvette , F-91190 , France
Abstract
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Publisher
Walter de Gruyter GmbH
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Reference225 articles.
1. Adán, C., Matsushima, Y., Hernández-Sierra, R., Marco-Ferreres, R., Fernández-Moreno, M.Á., González-Vioque, E., Calleja, M., Aragón, J.J., Kaguni, L.S., and Garesse, R. (2008). Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development. J. Biol. Chem. 283: 12333–12342, https://doi.org/10.1074/jbc.m801342200. 2. Agaronyan, K., Morozov, Y.I., Anikin, M., and Temiakov, D. (2015). Replication-transcription switch in human mitochondria. Science 347: 548–551, https://doi.org/10.1126/science.aaa0986. 3. Alam, T.I., Kanki, T., Muta, T., Ukaji, K., Abe, Y., Nakayama, H., Takio, K., Hamasaki, N., and Kang, D. (2003). Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31: 1640–1645, doi:https://doi.org/10.1093/nar/gkg251. 4. Ali, A.T., Boehme, L., Carbajosa, G., Seitan, V.C., Small, K.S., and Hodgkinson, A. (2019). Nuclear genetic regulation of the human mitochondrial transcriptome. Elife 8: e41927, https://doi.org/10.7554/eLife.41927. 5. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., et al.. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457–465, https://doi.org/10.1038/290457a0.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|