Exploration of generalized two-phase free convection magnetohydrodynamic flow of dusty tetra-hybrid Casson nanofluid between parallel microplates

Author:

Khan Dolat1,Hussien Mostafa A.2,Elsiddieg Awatif M. A.3,Lone Showkat Ahmad4,Hassan Ahmed M.5

Affiliation:

1. Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT) , 126 Pracha Uthit Rd., Bang Mod, Thung Khru , Bangkok , 10140 , Thailand

2. Mechanical Engineering Department, College of Engineering, King Khalid University , Abha , 61421 , Saudi Arabia

3. Department of Mathematics, College of Science and Humanities in Hotat Bani Tamim, Prince Sattam Bin Abdulaziz University , Al-Kharj , 11942 , Saudi Arabia

4. Department of Basic Sciences, College of Science and Theoretical, Studies, Saudi Electronic University, Jeddah-M , Riyadh , 11673 , Saudi Arabia

5. Faculty of Engineering, Future University in Egypt , New Cairo , Egypt

Abstract

Abstract Dusty Casson fluids and tetra-hybrid nanofluids are complex phenomena that find their extensive uses in engineering and industrial applications. For instance, dusty fluids are used in gas-freezing systems and nuclear power reactors. The main objective of this article is to focus on the characterization of generalized two-phase free convection magnetohydrodynamic flow of dusty tetra-hybrid Casson nanofluid among parallel microplates: dusty Casson fluid and tetra-hybrid nanofluid exhibit free movement and electrical conductivity. The Caputo–Fabrizio fractional derivative recently discovered generalizes the partial differential equations governing the flow. Highly accurate temperature and velocity distributions can be obtained using finite sine Fourier and Laplace transform together. This study examines the relationships between temperature, dust particle velocity, and Casson fluid velocity, along with the effects of magnetic parameter, Grashof number, dusty fluid parameter, Peclet number, Reynold number, and particle mass parameter. The Mathcad-15 software provides Casson, dusty, and temperature profiles graphically. The Nusselt number and skin friction are also examined for the tetra-hybrid nanofluid. The fractional Casson fluid model is more accurate than the classical model in terms of velocity, temperature, heat transfer, and skin friction. Graphical results conclude that the fractional Casson fluid model describes a more realistic aspect of both (fluid and dust particle) velocities and temperature profiles, heat transfer rate, and skin friction than the classical Casson fluid model. Furthermore, the heat transfer rate enhanced from 0 to 39.3111% of the tetra-hybrid nanofluid.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3