Three-dimensional metallic carbon allotropes with superhardness

Author:

Fan Qingyang12,Liu Heng1,Jiang Li1,Zhang Wei3,Song Yanxing3,Wei Qun4,Yu Xinhai5,Yun Sining6

Affiliation:

1. College of Information and Control Engineering, Xi’an University of Architecture and Technology , Xi’an 710055 , China

2. Shaanxi Key Laboratory of Nano Materials and Technology , Xi’an 710055 , China

3. School of Microelectronics, Xidian University , Xi’an 710071 , China

4. School of Physics and Optoelectronic Engineering, Xidian University , Xi’an 710071 , China

5. Department of Mechanical and Electrical Engineering, Hetao College, Bayannur , Inner Mongolia 015000 , China

6. Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi’an University of Architecture and Technology , Xi’an 710055 , China

Abstract

Abstract Three novel three-dimensional orthorhombic carbon phases are proposed based on first-principles calculations in this work. These phases possess dynamic stability and mechanical stability and are theoretically more favorable in energy compared to most other carbon allotropes. The hardness levels of oP-C16, oP-C20, and oP-C24 are 47.5, 49.6, and 55.3 GPa, respectively, which are greater than those of T10, T18, and O12 carbon. In addition, although oP-C16, oP-C20, and oP-C24 are metals, their ideal shear strengths are also greater than those of common metals such as Cu, Fe, and Al. Due to p y electrons crossing the Fermi level, oP-C16, oP-C20, and oP-C24 show metallicity, and their charge densities of the band decomposition suggest that all the conductive directions of oP-C16, oP-C20, and oP-C24 are exhibited along the a- and b-axis, similar to C5.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3