Humic acid assisted stabilization of dispersed single-walled carbon nanotubes in cementitious composites

Author:

Hu Tao1,Jing Hongwen1,Li Luan1,Yin Qian1,Shi Xinshuai1,Zhao Zhenlong1

Affiliation:

1. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, China

Abstract

AbstractSignificant research has been done in recent decades in the field of the dispersion of carbon nanotubes in aqueous solutions and the reinforcement of ordinary Portland cement (OPC). However, the cementitious mixture, as an alkaline environment, easily leads to the re-agglomeration of dispersed single-walled carbon nanotubes (SWCNTs) and influences their enhancing effects. Humic acid (HA) is a type of natural organic matter which can assist the stabilization of dispersed single-walled carbon nanotubes in cementitious composites. The present study characterizes the influence of HA in stabilizing the dispersion of SWCNTs by means of ultraviolet spectrophotometer tests. The fluidity of fresh cement slurry and mechanical performance of hardened OPC pastes were measured to better illustrate the dispersion of SWCNTs in real cement composites. The results not only reveal that the addition of an alkaline environment to the SWCNT suspensions results in a rapid decrease of the dispersion, but also suggest that the appropriate content of HA (0.12 wt.%) can play a significant role in stabilizing the dispersion of SWCNTs. When the mixed hybrid of SWCNTs and HA with a concentration of HA/c equal to 0.05 wt.% is used, the fluidity of the fresh cement slurry experiences a maximum decline and this mixture content of materials will dramatically increase the compressive and flexural strength by about 31% and 48%, which indicates that more SWCNTs are in a dispersed state under this concentration. SEM images further prove that a suitable HA/c can inhibit the expansion of cracks in the cementitious composites.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3