Glucose-responsive nanogels efficiently maintain the stability and activity of therapeutic enzymes

Author:

Qi Hongzhao1,Yang Jie2,Yu Jie3,Yang Lijun4,Shan Peipei1,Zhu Sujie1,Wang Yin1,Li Peifeng1,Wang Kun1,Zhou Qihui1

Affiliation:

1. Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University , Qingdao 266021 , China

2. Department of Traditional Chinese Medicine, Liaocheng Dongchangfu People’s Hospital , Liaocheng 252003 , China

3. Qingdao Center Hospital, Qingdao Center Medical Group , Qingdao 266042 , China

4. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao 266101 , China

Abstract

Abstract To date, the encapsulation of therapeutic enzymes in a protective matrix is an optimized strategy for the maintenance of their stability, facilitating their clinical application. However, the stability and activity of therapeutic enzymes are often in tension with each other. A rigid protective matrix may effectively maintain the stability of therapeutic enzymes, but it can reduce the diffusion of substrates toward the therapeutic enzyme active site, dramatically affecting their catalytic efficiency. Here, we exploited a kind of nanogels by in situ polymerization on the arginine deiminase (ADI) surface with 3-acrylamido-phenylboronic acid (APBA) monomer. These nanogels efficiently improved the thermal stability (25–75℃), the pH stability (pH 1–13), and protease (trypsin) stability of ADI due to the strong rigidity of the surface poly(APBA) shell. And even after 60 days of storage, ∼60% of the activity of ADI encapsulated by nanogels remained. Furthermore, ADI encapsulated by nanogels could efficiently degrade arginine to increase the ratio of citrulline to arginine in mice plasma. That is because autologous glucose binds with APBA leading to the hydrophilicity increase of nanogels, and then, the arginine molecules can readily diffuse toward the encapsulated ADI. This nanogel platform eases the tension between the stability and activity of therapeutic enzymes. The resulting nanogels can efficiently maintain the in vitro stability and the in vivo activity of therapeutic enzymes, facilitating the exploitation of new therapeutic enzyme formulations, which can be transported and stored in vitro for a long time and be applied effectively in vivo.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3