Advanced nickel nanoparticles technology: From synthesis to applications

Author:

Jaji Nuru-Deen12,Lee Hooi Ling3,Hussin Mohd Hazwan1,Akil Hazizan Md4,Zakaria Muhammad Razlan5,Othman Muhammad Bisyrul Hafi1

Affiliation:

1. School of Chemical Sciences, Universiti Sains Malaysia , 11800 Minden , Penang , Malaysia

2. Department of Chemistry, Federal College of Education Technical Gombe , P.M.B. 060 , Gombe , Gombe State , Nigeria

3. Nanomaterials Research Group, School of Chemical Sciences, University Sains Malaysia , 11800 Minden , Penang , Malaysia

4. School of Materials and Minerals Resources Engineering, Engineering Campus, Universiti Sains Malaysia , 14300 Nibong Tebal , Pulau Pinang , Malaysia

5. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Perlis , Malaysia

Abstract

Abstract Over the last decade, nickel nanoparticles (NiNPs) have been investigated for various potential applications due to their superior ferromagnetic properties such as magneto-crystalline anisotropy, high coercive forces, and chemical stability. Therefore, there has been a tremendous enhancement in the synthesis techniques, proposed reaction mechanisms, and applications of NiNPs. This paper presents a recent overview of the synthesis, reaction mechanisms, and applications of NiNPs. NiNPs in the size range of 1–100 nm are synthesized by various methods for research and commercial applications. The synthesis techniques are classified into three main types, namely, top-down, bottom-up, and hybrids of top-down and bottom-up protocols including solvothermal, physical, and chemical approaches. The detailed reaction mechanisms in the formation of NiNPs, especially for biosynthesis techniques, are extensively described. Trends in NiNP applications in fields such as biomedical, catalysis, supercapacitors, and dye-sensitized solar cells are explored. The basic advantages and role of NiNPs as a catalyst for various reactions are illustrated here.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3