A review of the design, processes, and properties of Mg-based composites

Author:

Guan Haotian1,Xiao Hui1,Ouyang Sihui12,Tang Aitao12,Chen Xianhua12,Tan Jun12,Feng Bo3,She Jia12,Zheng Kaihong3,Pan Fusheng12

Affiliation:

1. College of Materials Science and Engineering, Chongqing University , Chongqing 400044 , China

2. National Engineering Research Center for Magnesium Alloys, Chongqing University , Chongqing 400044 , China

3. Institute of New Materials, Guangdong Academy of Sciences , Guangzhou 510650 , China

Abstract

Abstract Magnesium-based composites are promising materials that can achieve higher strength, modulus, stiffness, and wear resistance by using metals, ceramics, and nanoscale carbon-based materials as reinforcements. In the last few decades, high-performance magnesium-based composites with excellent interfacial bonding and uniformly distributed reinforcements have been successfully synthesized using different techniques. The yield strength, Young’s modulus, and elongation of SiC nanoparticle-reinforced Mg composites reached ∼710 MPa, ∼86 GPa, and ∼50%, respectively, which are the highest reported values for Mg-based composites. The present work summarizes the commonly used reinforcements of magnesium composites, particularly nano-reinforcements. The fabrication processes, mechanical properties, reinforcement dispersion, strengthening mechanisms, and interface optimization of these composites are introduced, and the factors affecting these properties are explained. Finally, the scope of future research in this field is discussed.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3