Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesives

Author:

Ozankaya Görkem1,Asmael Mohammed1,Alhijazi Mohamad2,Safaei Babak1,Alibar Mohamed Yasin1,Arman Samaneh3,Kotrasova Kamila4,Kvocak Vincent4,Weissova Michala4,Zeeshan Qasim1,Hui David5

Affiliation:

1. Department of Mechanical Engineering, Eastern Mediterranean University , Famagusta , North Cyprus via Mersin 10 , Turkey

2. School of Engineering, Lebanese International University LIU , Bekaa , Lebanon

3. School of Science and Technology, The University of Georgia , Tbilisi 0171 , Georgia

4. Institute of Structural Engineering and Transportation Structures, Faculty of Civil Engineering, Technical University of Kosice , Vysokoskolska 4 , 042 00 Kosice , Slovakia

5. Department of Mechanical Engineering, University of New Orleans , New Orleans , LA 70148 , United States of America

Abstract

Abstract In this study, graphene nanoplatelets (GNPs) and titanium dioxide nanofillers were added to epoxy resin P-5005 at five different weight percentages (wt%), viz., 1, 5, 10, 15, and 20 wt%. The tensile properties of the nanocomposites were experimentally tested following ASTM D638-14. Then, the above-mentioned nanocomposites were applied as adhesives for an overlap joint of two A5055 aluminum sheets. The apparent shear strength behavior of joints was tested following ASTM D1002-01. Moreover, experimentally obtained results were applied to train and test machine learning and deep learning models, i.e., adaptive neuro-fuzzy inference system, support vector machine, multiple linear regression, and artificial neural network (ANN). The peak tensile strength (TS) and joint failure load (FL) values were observed in epoxy/GNP samples. The ANN model exhibited the least error in predicting the TS and FL of the considered nanocomposites. The epoxy/GNP nanocomposites exhibited the highest TS of 28.49 MPa at 1 wt%, and the peak overlap joints exhibited an FL of 3.69 kN at 15 wt%.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3