Why is the nanoscale special (or not)? Fundamental properties and how it relates to the design of nano-enabled drug delivery systems

Author:

Otto Daniel P.1,de Villiers Melgardt M.2

Affiliation:

1. 1Catalysis and Synthesis Research Group, Chemical Resource Beneficiation Research Focus Area, Faculty of Natural Sciences, North-West University, Potchefstroom 2520, South Africa

2. 2School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA

Abstract

AbstractNanoscience studies describe natural phenomena at the submicron scale. Below a critical nanoscale limit, the physical, chemical, and biological properties of materials show a marked departure in their behavior compared to the bulk. At the nanoscale, energy conversion is dominated by phonons, whereas at larger scales, electrons determine the process. The surface-to-volume ratio at the nanoscale is immense, and interfacial interactions are markedly more important than at the macroscopic level, where the majority of the material is shielded from the surface. These properties render the nanoparticles to be significantly different from their larger counterparts. Nano-enabled drug delivery systems have resulted from multidisciplinary cooperation aimed at improving drug delivery. Significant improvements in the thermodynamic and delivery properties are seen due to nanotechnology. Hybrid nanodelivery systems, i.e., membranes with nanopores that can gate stimuli-responsive drug release could be a future development. Nanotechnology will improve current drug delivery and create novel future delivery systems. The fundamental properties and challenges of nanodelivery systems are discussed in this review.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3