Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials

Author:

Meng Tao1,Ying Kanjun1,Yang Xiufen1,Hong Yongpeng12

Affiliation:

1. Institute of Engineering Materials, College of Civil Engineering and Architecture, Zhejiang University , Hangzhou 310058 , China

2. Contract Management Department, China Overseas Property Co., Ltd. , Fuzhou 350108 , China

Abstract

Abstract Filling and nucleation are the mechanisms of modifying cement paste with nanomaterials, as investigated by previous studies, and are difficult to reflect the different effects of nanomaterials, especially on the changes of cement clinker and hydration products in the cement hydration process. In this study, the mechanisms of modifying cement paste with nano-calcium carbonate (NC), nano-graphene oxide (NG), nano-silica (NS), and nano-titanium dioxide (NT) were investigated by determining the mechanical properties of cement paste treated with nanomaterials and analysing the changes in the cement clinker (tricalcium silicate and dicalcium silicate), hydration products (portlandite and ettringite), and microstructure through many micro-test methods. The results indicate that the incorporation of nanomaterials could improve the early strength of cement paste specimens due to more consumption of cement clinker. Meanwhile, different nanomaterials promote the formation of different hydration products at early ages. C–A–S–H gel, flower-like ettringite, and C–S–H seeds are widely distributed in the cement paste with the incorporation of NC, NG, and NS, respectively. NT exhibits insignificant nucleation effect and has inhibitory effect on portlandite precipitation. This study provides key insights into the mechanism of nanomaterials from the perspective of cement hydration, which may promote the further research and application of nanomaterials in the cement and concrete industries.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3