Performance of carbon nanomaterials incorporated with concrete exposed to high temperature

Author:

Han Seungyeon1,Hossain Mohammad Shakhawat2,Ha Taeho2,Yun Kyong Ku2

Affiliation:

1. KICT (Korea Institute of Civil Engineering and Building Technology) , 283 Goyang-daero , Daehwa-dong, Ilsanseo-gu, Goyang-si , Gyeonggi-do , Republic of Korea

2. Department of Civil Engineering, Kangwon National University , 1 Gangwondaegil , Chuncheon , 24341 , Republic of Korea

Abstract

Abstract In recent decades, there have been initiatives to incorporate carbon nanomaterials (CNMs) into cement composites, particularly graphene oxide (GO), carbon nanotubes, graphite (GP), and mild carbon (MC). Nevertheless, little is known about how these CNMs interact with the cement matrix itself. In this research, the impact of CNM incorporation at high temperatures (250, 500, 750, and 1,000°C) on cement’s mechanical characteristics and microstructure was investigated. Nine mixes were created with the CNM content (0.1 and 0.3%) being taken into consideration. The microstructure of the CNM composites was further investigated using X-ray diffractometry, thermogravimetry, derivative thermogravimetry, digital microscopy, and micro-computed tomography (micro-CT). Based on research observations, the study demonstrated that the mechanical properties of most specimens could be enhanced through the introduction of CNMs. The recommended proportions of GP-0.1, GO-0.1, and MC-0.1, in accordance with the weight of the binder, and the impact of the CNMs on the elastic modulus were also assessed. As a consequence, the CNM’s porous structure and apparent crack pattern were identified using microstructure analysis.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3