Effect of PVA fiber on durability of cementitious composite containing nano-SiO2

Author:

Zhang Peng,Li Qing-fu,Wang Juan,Shi Yan,Ling Yi-feng

Abstract

Abstract In the current investigation, the influence of polyvinyl alcohol (PVA) fibers on flowability and durability of cementitious composite containing fly ash and nano-SiO2 was evaluated. PVA fibers were added into the composite at a volume fraction of 0.3%, 0.6%, 0.9%, and 1.2%. The flowability of the fresh cementitious composite was assessed using slump flow. The durability of cementitious composite includes carbonation resistance, permeability resistance, cracking resistance as well as freezing-thawing resistance, which were evaluated by the depth of carbonation, the water permeability height, cracking resistance ratio of the specimens, and relative dynamic elastic modulus of samples after freeze-thaw cycles, respectively. The results indicated that addition of PVA fibers had a little disadvantageous influence on flowability of cementitious composite, and the flowability of the fresh mixtures decreased with increases in PVA fiber content. Incorporation of PVA fibers significantly improved the durability of cementitious composites regardless of addition of nano-particles. When the fiber content was less than 1.2%, the durability indices of permeability resistance and cracking resistance increased with fiber content. However, the durability indices of carbonation resistance and freezing-thawing resistance began to decrease as the fiber dosage increased from 0.9% to 1.2%. The fiber reinforced cementitious composite exhibited better durability due to addition of nano-SiO2 particles. Nano-SiO2 particle improves microscopic structure of fiber reinforced cementitious composites, and the nano-particles are beneficial for PVA fibers to play the role of reinforcement in cementitious composites.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Reference84 articles.

1. A model about dynamic parameters through magnetic fields during the alignment of steel fibres reinforcing cementitious composites;Constr. Build. Mater,2019

2. Tensile behaviour and durability issues of engineered cementitious composites with rice husk ash;Materia,2017

3. Preliminary research on carbonation resistance of fiber reinforced concrete;J. Build. Mater,2010

4. Influence of matrix flow ability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC;Compos. Part B: Eng,2014

5. Nanomodification to improve the ductility of cementitious composites;Nanoscale Res. Lett,2015

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3