Numerical investigation of thermal radiation with entropy generation effects in hybrid nanofluid flow over a shrinking/stretching sheet

Author:

Muhammad Raza Shah Naqvi Syed1,Manzoor Umair2,Waqas Hassan1,Liu Dong1,Naeem Hamzah2,Eldin Sayed M.3,Muhammad Taseer4

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University , Zhenjiang 212013 , China

2. Department of Mathematics, Government College University, Layyah Campus 31200 , Faisalabad , Pakistan

3. Center of Research, Faculty of Engineering, Future University in Egypt , New Cairo 11835 , Egypt

4. Department of Mathematics, College of Sciences, King Khalid University , Abha 61413 , Saudi Arabia

Abstract

Abstract The need for efficiency in nanotechnology has spurred extraordinary development. Hybrid nanofluids, which are base fluids injected with nanoparticles, have a great potential for thermal enhancement in thermal systems. Particularly promising for magnetic thermal engineering are magnetic hybrid nanofluids. Understanding dynamic transport in Graphene Oxide (GO)–Fe3O4/H2O and GO/H2O nanofluids over stretching and shrinking surfaces, with severe entropy consequences, is still uncharted territory. To fully grasp this complexity, our study examines the numerical investigation of entropy formation in magnetohydrodynamic (MHD) hybrid nanofluids. The aim of this study is to establish a mathematical framework for understanding entropy production in the context of MHD, unsteady, incompressible flow of hybrid nanofluid flow over surfaces that experience both stretching and shrinking. The investigation encompasses the influence of MHD effects and nonlinear thermal radiation on flow behavior. The governing modeled form is modified into solvable representations in Cartesian configuration and then addressed utilizing the built-in bvp4c approach in MATLAB. For numerous quantities of the relevant parameters, several key features of flow and heat transmission are explored, discussed, and illustrated utilizing tables and graphs. Furthermore, the heat transfer properties in a magnetic field have been improved dramatically. The comprehensive entropy generation rate was condensed by up to 41% as opposed to refined water, according to the findings from the analysis.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3