Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches

Author:

Le Trequesser Quentin,Seznec Hervé,Delville Marie-Hélène1

Affiliation:

1. 1CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France

Abstract

AbstractThe successful development of nanomaterials illustrates the considerable interest in the development of new molecular probes for medical diagnosis and imaging. Substantial progress was made in the synthesis protocol and characterization of these materials, whereas toxicological issues are sometimes incomplete. Nanoparticle-based contrast agents (CAs) tend to become efficient tools for enhancing medical diagnostics and surgery for a wide range of imaging modalities. The multimodal nanoparticles (NPs) are much more efficient than the conventional molecular-scale CAs. They provide new abilities for in vivo detection and enhanced targeting efficiencies through longer circulation times, designed clearance pathways, and multiple binding capacities. Properly protected, they can safely be used for the fabrication of various functional systems with targeting properties, reduced toxicity, and proper removal from the body. This review mainly describes the advances in the development of mono- to multimodal NPs and their in vitro and in vivo relevant biomedical applications ranging from imaging and tracking to cancer treatment. Besides the specific applications for classical imaging (magnetic resonance imaging, positron emission tomography, computed tomography, ultrasound, and photoacoustic imaging), the less common imaging techniques such as terahertz molecular imaging (THMI) or ion beam analysis (IBA) are mentioned. The perspectives on the multimodal theranostic NPs and their potential for clinical advances are also mentioned.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inorganic nanosystems for imaging diagnostics;Inorganic Nanosystems;2023

2. Nanotechnology for Enhancing Medical Imaging;Nanomedicine;2023

3. Quantum Dots in Biological Imaging;Supramolecular Chemistry in Biomedical Imaging;2022-04-01

4. Nanotechnology for Enhancing Medical Imaging;Nanomedicine;2022

5. Multifunctional Polymeric Nanoparticles in Targeted and Controlled Delivery for Cancer Therapy;Nanoengineering of Biomaterials;2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3