Entropy production simulation of second-grade magnetic nanomaterials flowing across an expanding surface with viscidness dissipative flux

Author:

Jamshed Wasim1,Gowda Ramanahalli Jayadevamurthy Punith2,Kumar Rangaswamy Naveen2,Prasannakumara Ballajja Chandrappa2,Nisar Kottakkaran Sooppy3,Mahmoud Omar4,Rehman Aysha5,Pasha Amjad Ali6

Affiliation:

1. Department of Mathematics, Capital University of Science and Technology (CUST) , 44000 , Islamabad , Pakistan

2. Department of Studies and Research in Mathematics, Davangere University , Davangere 577002 , Karnataka , India

3. Department of Mathematics, Prince Sattam Bin Abdulaziz University , Wadi Aldawaser , 11991 , Saudi Arabia

4. Petroleum Engineering Department, Faculty of Engineering and Technology, Future University in Egypt , New Cairo 11835 , Egypt

5. Department of Mathematics, University of Gujrat , Gujrat 50700 , Pakistan

6. Aerospace Engineering Department, King Abdulaziz University , Jeddah 21589 , Saudi Arabia

Abstract

Abstract The principal focal point of the current review is the second-grade nanofluid (SGNF) stream with slanted magnetohydrodynamics and viscous disintegration impacts across a moving level flat surface with entropy investigation. Here, we have done a comparative study on copper–methanol and iron–methanol second-grade nanoliquids. The governing conditions of the SGNF model are changed into ordinary differential equations (ODEs) by using supportive changes. To tackle the non-straight ODEs, the Runge-Kutta Fehlberg-45 procedure is utilized. The result reveals that the velocity gradient of copper–methanol second-grade nanoliquid is strongly affected by suction, magnetic, and second-grade fluid parameters and declines faster when compared to iron–methanol second-grade nanoliquid. Copper–methanol SGNF shows improved heat transfer than iron–methanol SGNF for improved values of Eckert and Biot numbers.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3