Preparation and bonding mechanisms of polymer/metal hybrid composite by nano molding technology

Author:

Liu Xi1,Li Ying2,Long Ling1,Wang Hailong1,Guo Qingfeng3,Wang Qingchun1,Qi Jing1,Chen Jia1,Long Yan4,Liu Ji1,Zhou Zuowan5

Affiliation:

1. School of Automotive Engineering, Chengdu Aeronautic Polytechnic , Chengdu , 610100 , China

2. School of Mechanical Engineering, Chengdu University , 2025 Chengluo Avenue , Chengdu , 610106 , China

3. School of Aeronautical Manufacturing Industry, Chengdu Aeronautic Polytechnic , Chengdu , 610100 , China

4. School of Basic Education, Chengdu Aeronautic Polytechnic , Chengdu , 610100 , China

5. Institute of Frontier Science and Technology, Southwest Jiaotong University , Chengdu , 610031 , China

Abstract

Abstract With the development of nano molding technology (NMT), the polymer/metal hybrid (PMH) composites have made great progress in industries like automobile, aircraft, and boat. The bonding structure and bonding strength are the key factors ruling the application of PMH. In this work, the PMH containing polyphenylene sulfide (PPS) and Al alloy was prepared by NMT, and the surface treating of Al alloy and the bonding mechanism of PMH has been studied. The results reveal that the bonding strength between metal and polymer shows dependence on the pore structure of the metal surface, which could be controlled by changing the anodizing voltage and time. The PMH in which the Al plate was anodized at 15 V for 6 h achieves the best bonding strength of 1,543 N. The morphological analysis reveals that there forms an anchor and bolt structure in the interface of PPS and Al plate, which bonds the polymer and metal tightly. In addition, the chemical interaction between PPS and Al was confirmed by attenuated total reflection (ATR) infrared spectroscopy, which indicates that both physical and chemical effects contribute to the bonding strength of the PMH. This PMH has great potential of being used as alternative to traditional pure metal components, especially the packing materials of automobiles, electronic products, and furniture.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3