Effect of nanoadditives on the novel leather fiber/recycled poly(ethylene-vinyl-acetate) polymer composites for multifunctional applications: Fabrication, characterizations, and multiobjective optimization using central composite design

Author:

Sharma Shubham12,Sudhakara P.2,Petru Michal3,Singh Jujhar4,Rajkumar S.5

Affiliation:

1. PhD Research Scholar, Department of Mechanical Engineering, IK Gujral Punjab Technical University , Jalandhar-Kapurthala Road , Kapurthala 144603 , Punjab , India

2. CSIR-Central Leather Research Institute, Regional Center Department , Jalandhar 144021 , India

3. Faculty of Mechanical Engineering, Technical University of Liberec , Studentská 2 , 461 17 Liberec , Czech Republic

4. Department of Mechanical Engineering, IKGPTU , Jalandhar-Kapurthala Road , Kapurthala 144603 , Punjab , India

5. Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University , Hawassa , Ethiopia

Abstract

Abstract The current study intended to investigate the viability and efficacy of performance measurement by incorporating one of the most hazardous leather wastes, that is, leather buffing dust and nanofillers as reinforcing constituents within recycled poly(ethylene-vinyl acetate) as a matrix with maximum leather fiber-loading of 1:1, using a mill followed by hot-press molding. The samples were tested to evaluate the physicomechanical characteristics including tensile, compressive strength, density, abrasion-resistance, adhesion-strength, hardness, tear-resistance, compression and resilience, damping, and water-absorption as per the standard ASTM/SATRA/ISO testing methods. The thermoanalytical methods, namely thermalgravimetric analysis and differential scanning calorimetry, have been employed to simulate the performance, including the effectiveness of blended-mix through glass-transition and crystallization temperature. Furthermore, morphological properties of the fabricated composites have been explored using scanning electron microscopy and energy-dispersive spectroscopy analysis. In addition, the attenuated total reflection-Fourier-transform infrared spectroscopy was performed to examine the physicochemical molecular structure, chemical bonding, and functional groups of the neat recycled EVA (ethylene-vinyl acetate) copolymer and leather buffing dust/recycled EVA polymer composites. Throughout this study, the physicomechanical characteristics of leather buffing dust/recycled EVA composites were ameliorated by optimizing the operating parameters of the hot-press compression molding process through the central composite design approach in response surface methodology. The obtained results of the fabricated novel composites were certainly splendid for a value-added application in footwear, structural, floor-covering, and transportation domains.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3