Mechanical, morphological, and fracture-deformation behavior of MWCNTs-reinforced (Al–Cu–Mg–T351) alloy cast nanocomposites fabricated by optimized mechanical milling and powder metallurgy techniques

Author:

Sharma Shubham12,Patyal Vikas3,Sudhakara P.1,Singh Jujhar4,Petru Michal5,Ilyas R. A.67

Affiliation:

1. CSIR-Central Leather Research Institute, Regional Centre for Extension and Development, Leather Complex, Kapurthala Road, Jalandhar , Punjab 144021 , India

2. PhD Research Scholar, IK Gujral Punjab Technical University, Jalandhar-Kapurthala Highway, VPO, Ibban , Punjab 144603 , India

3. Department of Design and Manufacturing, Shaurya Aeronautics Private Limited Institute , New Delhi , India

4. IK Gujral Punjab Technical University, Jalandhar-Kapurthala Highway, VPO, Ibban , Punjab 144603 , India

5. Faculty of Mechanical Engineering, Technical University of Liberec , Studentská 2 , 461 17 Liberec , Czech Republic

6. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia , Johor Bahru 81310 , Johor , Malaysia

7. Centre for Advanced Composite Materials, Universiti Teknologi Malaysia , Johor Bahru 81310 , Johor , Malaysia

Abstract

Abstract The carbon nanotube (CNT) is becoming more popular due to their low-density, high-strength etc. Among CNTs, multi-walled carbon nanotubes (MWCNTs) are gaining more importance due to their enhanced thermal and electrical conductivity. The present research is exploring the applicability of MWCNTs reinforced with AA2024-T351 alloys for electromechanical applications. This study is currently undertaken for using MWCNTs as a reinforcing particulate for the purpose to enhance the characteristics including low density, high strength, and hardness together with excellent thermal and electrical conductivity of the aluminum alloy matrices. Therefore, this article provides a state-of-the-art experimental approach to fabricate and furthermore, to evaluate the mechanical characteristics, microstructural analysis, and fatigue behavior of Al–Cu–Mg–T351/MWCNT composites under both the mechanical and thermal loading by utilizing powder technology processing route. The uniform dispersion of CNTs has been exposed using ball milling process. Results revealed that the MWCNTs provide extraordinary synergistic strength, enhances fatigue resistance, creep resistance, ductility, and other mechanical characteristics of the aluminum-based composites. The mechanical loading of the composite exhibited increased properties as compared to thermal-loaded aluminum-MWCNT composites. Findings conclude that the maximum hardness of 35Hv obtained for sintered AA2024-T351 and 45Hv for 0.5% MWCNT heat-treated samples indicate that the addition of MWCNT enhances the hardness which may be because CNT is evenly dispersed at the interfacial space. Maximum UTS of 105.21 MPa was obtained with 0.5% MWCNT for sintered composites. Microstructural analysis of the Al–Cu–Mg–T351/MWCNTs composite exhibits reasonably uniform distribution, void formation, and good interfacial bonding. X-ray Diffraction method patterns of fabricated composite shows that the CNT is present at 2β = 23.6 and 44.6°, whereas high peaks of aluminum are present at uniform dispersed positions. Transmission electron magnifying instrument study further substantiates the above research. Fracture micrographs of the Al–Cu–Mg–T351/MWCNTs composite portray the resistant nature of the nanotubes due to the presence of CNTs, Al–Cu, and aluminum carbide elements in the alloy and the reactions that happened during heat treatment. This significant improvement was attributed to the shear interactions among the constituents and high load carrying capacity of the CNT, uniform dispersion, and interface bond strength among the matrix and constituents. The findings in the study will undoubtedly be beneficial for the development of high-strength, MWCNTs/Al–Cu–Mg–T351, matrix composites in future for multifunctional applications on broader spectrum.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3