Building effective core/shell polymer nanoparticles for epoxy composite toughening based on Hansen solubility parameters

Author:

Ning Na12,Qiu Yiping2,Wei Yi12

Affiliation:

1. Center for Civil Aviation Composites, Donghua University , 2999 North Renmin Road , Shanghai , 201620 , China

2. Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University , 2999 North Renmin Road , Shanghai , 201620 , China

Abstract

Abstract Particles have been demonstrated to toughen epoxy resins, especially for fiber-reinforced epoxy composites, and core/shell particles are one of them. It is known that not all particles toughen the same but most evaluations are through experimentation, and few studies have been conducted to accurately predict the particles’ toughening effect or guide the design of effective particles. In this study, efforts were made to find the control factors of core/shell particles, primarily interfacial compatibility and degree of dispersion, and how to predict them. Nanocomposites were fabricated by incorporating core/shell nanoparticles having various shell polymer compositions, especially their polarities. Their compatibility was estimated using a novel quantitative approach via adopting the theory of Hansen solubility parameters (HSP), in which the HSP of core/shell nanoparticles and the epoxy matrix were experimentally determined and compared. It was found that the HSP distance was a good predictor for particle dispersion and interfacial interaction. Particles having a small HSP distance (R a) to the epoxy resin, represented by the polybutylacrylate core/polymethyl methacrylate shell particle having the smallest R a of 0.50, indicated a uniform dispersion and strong interfacial bonding with the matrix and yielded outstanding toughening performance. In contrast, polybutylacrylate core/polyacrylonitrile shell particle having the largest HSP distance (6.56) formed aggregates and exhibited low interfacial interaction, leading to poor toughness. It was also demonstrated that HSP can provide an effective strategy to facilitate the design of effective core/shell nanoparticles for epoxy toughening.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3