Microstructure and life prediction model of steel slag concrete under freezing-thawing environment

Author:

Wen Yang1,Sun Hui1,Hu Shuaidong1,Xu Guangmao1,Wu Xiazhi1,Song Congcong1,Liu Zhen1,Li Zhaojian1

Affiliation:

1. School of Civil Engineering, Inner Mongolia University of Science and Technology , Baotou , Inner Mongolia, 014010 , China

Abstract

Abstract The goals of this paper are to study the frost resistance of steel slag concrete (SSC), research the damage mechanisms, and predict the service life of SSC in cold regions. First, the stability of steel slag (SS) was tested, and then SS samples with different treatment dosages were used as aggregates to replace natural aggregates of equal volumes in the preparation of C40 concrete. The microstructures of concrete and micro properties of cement hydration products were investigated in nanospace in this research. In addition, rapid frost resistance durability tests were carried out under laboratory conditions. The results revealed that the ordinary concrete (OC) exhibited a more serious damage phenomenon, and the mass loss and relative dynamic elastic modulus of OC were changed by 5.27 and 62.30%, respectively. However, with increases in the SS content, the losses in mass were lowered. Furthermore, the relative dynamic elastic modulus decreased less, and the frost resistance of the specimens was stronger. The range of mass loss rate was between 2.233 and 3.024%, and the relative dynamic elastic modulus range was between 74.92 and 91.09%. A quadratic function with a good fitting degree was selected to establish a freezing-thawing damage calculation model by taking the relative dynamic elastic modulus as the variable. Then, the freezing-thawing durability lifespan of concrete in the colder regions of northern China was successfully predicted by using the damage calculation model. The results of SSC20–60 showed the better frost resistance durability when the content of SS sand was 20% and the dosage of SS stone was 60%. Its frost resistance lifespan was more than twice that of OC, which demonstrated that SS as an aggregate could effectively improve the frost resistance lifespan of concrete to a certain extent.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3