Graphene nanofibers: A modern approach towards tailored gypsum composites

Author:

Martinez Gordon Alejandro1,Prieto Barrio María Isabel1,Cobo Escamilla Alfonso1

Affiliation:

1. Universidad Politécnica de Madrid, Escuela Técnica Superior de Edificación , 28050 Madrid , Spain

Abstract

Abstract Energy poverty is a global challenge that demands sustainable and affordable solutions. This study investigates the use of commercial graphene nanofibers (GNFs) as a reinforcing agent in gypsum composites for energy-efficient building retrofitting. The GNFs were manually dispersed in the gypsum matrix, and the composites were fabricated by casting and curing. The thermomechanical properties were systematically studied using various characterization techniques, including scanning electron microscopy, X-ray diffraction, and thermal analysis. The results show that the addition of 1% GNFs reduces the thermal conductivity of the composites by more than 40% and improves their flexural and compressive strength by up to 23 and 42%, respectively, compared to neat gypsum. The enhancements are attributed to the effective phonon scattering of the GNFs and their ability to act as crystal seeding sites, resulting in a denser and more homogeneous structure. The dynamic thermal analysis further demonstrates that the GNF-reinforced composites could reduce heating and cooling requirements by 14 and 11%, respectively, indicating their potential for energy-efficient building retrofitting. However, the cost effectiveness and safety issues of the GNF-reinforced composites should be carefully considered before their large-scale implementation. Achieving uniform dispersion of nanoparticles in high concentrations is also a significant challenge that will be addressed in future studies.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3