Intelligent computing for the double-diffusive peristaltic rheology of magneto couple stress nanomaterials

Author:

Shoaib Muhammad1,Ali Faizan2,Awais Muhammad2,Naz Iqra2,Shamim Robicca2,Nisar Kottakkaran Sooppy3,Raja Muhammad Asif Zahoor4,Malik Muhammad Yousaf5,Abbas Mohamed6,Saleel C. Ahamed7

Affiliation:

1. Artificial Intelligence Center, Yuan Ze University, AI Center , Taoyuan 320 , Taiwan

2. Department of Mathematics, COMSATS University Islamabad, Attock Campus , Attock 43600 , Pakistan

3. Department of Mathematics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University , Al Kharj , Saudi Arabia

4. Future Technology Research Center, National Yunlin University of Science and Technology , 123 University Road, Section 3 , Douliou , Yunlin 64002 , Taiwan

5. Department of Mathematics, College of Sciences, King Khalid University , Abha , 61413 , Saudi Arabia

6. Electrical Engineering Department, College of Engineering, King Khalid University , Abha 61421 , Saudi Arabia

7. Department of Mechanical Engineering, College of Engineering, King Khalid University , Asir-Abha 61421 , Saudi Arabia

Abstract

Abstract In nanofluids, the effect of convection in the presence of double diffusivity on a magneto couple stress fluid with the peristaltic flow of a model in a non-uniform channel (MCSFM) is reviewed in this article. This research discusses MCSF in a non-uniform channel by applying the Levenberg–Marquardt procedure via an artificial backpropagated neural network (LMP-ABNN). For two-dimensional and two-directional flows, mathematical formulations of double-diffusivity convection of a magneto couple stress fluid in nanofluids are developed. The partial differential equations are reduced to ordinary differential equations by using appropriate transformations. The assessment of the Hartmann number, thermophoresis parameter, Dufour parameter, Soret parameter, and magnetic Reynolds number over concentration profiles and temperature profiles is made by generating a dataset for LMP-ABNN based on the ND solve method for different variations of MSCFM. To examine the approximate solution validation, training and testing procedures are interpreted, and the performance is verified through error histogram and mean square error results. The extremely nonlinear equations are reduced by employing a long-wavelength approximation and a low but finite Reynolds number. To describe the behavior of flow quantities, graphical representations of a variety of physical characteristics of importance are shown. The impact of the Hartmann number and magnetic Reynolds number over axial magnetic field and current density is also studied. The concentration increases as the thermophoresis parameter and Dufour parameter values increase. This occurs because the concentration and both these parameters have a direct relationship. We observed opposite behavior for both the magnetic Reynolds number and the Hartman number. The behavior of current density J z increases with increasing values of R m. Both the temperature distribution and solute concentration increase. The final outcome of this study is to provide the potential for these techniques to provide new insights and solutions to challenging problems in nanofluids and other areas of fluid mechanics and to facilitate the design of more efficient and effective microfluidic devices.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3