Research progress on key problems of nanomaterials-modified geopolymer concrete

Author:

Xu Zhong1,Huang Zhenpu1,Liu Changjiang2,Deng Hui1,Deng Xiaowei3,Hui David4,Zhang Xiaoli1,Bai Zhijie1

Affiliation:

1. College of Environment and Civil Engineering, Chengdu University of Technology , Chengdu 610059 , China

2. School of Civil Engineering, Guangzhou University , Guangzhou 510006 , China

3. Department of Civil Engineering, The University of Hong Kong , Pokfulam , Hong Kong 999077 , China

4. Department of Mechanical Engineering, University of New Orleans , New Orleans , LA 70148 , United States of America

Abstract

Abstract The raw materials of geopolymer come from industrial wastes, which have the advantages of lower carbon emissions and less energy consumption compared with traditional cement products. However, it still has the disadvantages of low strength, easy cracking, and low production efficiency, which limit its engineering application and development. At present, with the application and development of nanotechnology in the field of materials, it is found that nanomaterials have a good filling effect on composites, which greatly improves the integrity of the composites. It has become a very popular research direction to optimize and improve the engineering application performance of geopolymer concrete (GPC) by nanomaterials. The modification of nanomaterials can further improve the properties of GPC and expand its application fields in engineering and life. Based on people’s strong interest in nanomaterial-modified GPC and providing the latest and complete research status for further related work, this paper summarized the key technical problems in the field of nanomaterials-modified GPC in the past decade. Those include the modification mechanism, dispersion mode, and mechanical properties of nanomaterials. At the same time, the application bottlenecks and key problems of nanomaterials-modified GPC are comprehensively analyzed. Finally, the prospects and challenges of future work in this field are discussed.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3