Fabrication of Ag/ZnO hollow nanospheres and cubic TiO2/ZnO heterojunction photocatalysts for RhB degradation

Author:

Chen Xiaodong1,Yang Zhong-Tao2,Wang Nannan3,Gao Xin1,Wang Gang4,Song Chunyu1,Liu Yunfeng5,Cui Lifeng6

Affiliation:

1. Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) , Zhanjiang 524000 , China

2. Marine Biomedical Research Institute of Guangdong Zhanjiang , Zhanjiang 524023 , China

3. College of Chemistry and Material Engineering, Chao Hu University , Hefei 238000 , China

4. College of Chemistry and Chemical Engineering, Henan University of Technology , Zhengzhou 450001 , China

5. Research Institute of Natural Gas Technology, Southwest Oil and Gas Field Company of PetroChina , Chengdu 610213 , China

6. School of Materials Science and Engineering, Dongguan University of Technology , Dongguan 523808 , China

Abstract

Abstract ZnO nanomaterials with the stereochemical structure were becoming a research focus in the scope of photocatalytic materials, but the ZnO was sensitive to UV light rather than the solar light source, which considerably prohibited its extended application. ZnO nanomaterials coupled with other nanomaterials could generate the alternative composite heterojunction nanomaterials to promote the photocatalytic activity. Herein, we reported two facile and feasible synthesis methods to fabricate TiO2/ZnO cube nanocomposites and Ag/ZnO hollow spheres by hydrothermal reaction and chemical deposition, respectively. In this regard, these composited nanomaterials have been successfully fabricated with high purities, good morphology, and crystal structure. Noticeably, in contrast with TiO2/ZnO and Ag/ZnO bulk nanocomposites, the Ag/ZnO hollow spheres could offer the higher activity for RhB degradation under the visible light. Moreover, the photocatalytic performance of Ag/ZnO for RhB degradation could be improved synergistically, and the effect of RhB degradation was highest when the Ag mass ratio was modulated at 10% in the sample. Furthermore, it remained a high photocatalytic efficiency even after four cycles. This protocol provided an approvable approach to fabricate efficient photocatalysts with persistent photostability in the wastewater treatment process.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3