Compressive strength and anti-chloride ion penetration assessment of geopolymer mortar merging PVA fiber and nano-SiO2 using RBF–BP composite neural network

Author:

Zhang Xuemei1,Zhang Peng1,Wang Tingya1,Zheng Ying1,Qiu Linhong1,Sun Siwen1

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University , Zhengzhou , 450001 , China

Abstract

Abstract In this study, we investigated the mechanical properties and chloride ion permeation resistance of geopolymer mortars based on fly ash modified with nano-SiO2 (NS) and polyvinyl alcohol (PVA) fiber and metakaolin (MK) at dose levels of 0–1.2% for PVA fiber and 0–2.5% for NS. The Levenberg–Marquardt (L–M) back propagation (BP) neural network, as well as the radial-based function (RBF) neural network, was used to predict the compressive strength and chloride ion permeation resistance of the geopolymer mortar with different admixtures of nanoparticles and PVA fiber, wherein the electric flux value was used as the index for chloride ion permeation performance. The RBF–BP composite neural network was constructed to study the compressive strength and chloride ion permeation resistance of nanoparticle-doped and PVA fiber ground geopolymer mortars. According to the experimental results of the RBF–BP composite neural network model, the mean square error (MSE) was observed to be 0.00071943, root mean square error (RMSE) was 0.026822, and mean absolute error (MAE) was 0.026822, thereby showing higher prediction accuracy, faster convergence, and better fitting effect compared with the single BP neural network and RBF neural network models. In this study, we combined the RBF–BP composite artificial neural network, providing a new method for the future assessment of the compressive strength and chloride ion penetration resistance of geopolymer mortar merging PVA fibers and NS in experiments and engineering studies.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3