Affiliation:
1. 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry – Structural Biology, Mikluho-Maklaya str, 16/10, Moscow 117997, Russian Federation
2. 2Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
3. 3Lomonosov Moscow State University, Moscow, Russian Federation
Abstract
AbstractOut of all membrane mimetics available for solution nuclear magnetic resonance (NMR) spectroscopy, phospholipid bicelles are the most prospective. Unlike lipid-protein nanodiscs their size can be easily controlled over a wide range, and the exchange of matter between the particles can take place. However, recent studies revealed several major drawbacks of conventional 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and DMPC/3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) bicelles. First, size of such bicelles can increase dramatically upon heating, and, second, rim-forming detergents of bicelles can cause improper folding of the water-soluble globular domains of membrane proteins. In order to avoid these effects, we tested the Façade detergents as possible alternative rim-forming agents for small isotropic bicelles. In the present work we characterized the size of bicelles formed by 3α-hydroxy-7α,12α-di-((O-β-D-maltosyl)-2-hydroxyethoxy)-cholane (Façade-EM) and 3α-hydroxy-7α,12α-di-(((2-(trimethylamino)ethyl)phosphoryl)ethyloxy)-cholane Façade-EPC as a function of temperature and lipid/detergent ratio by 1H NMR diffusion spectroscopy. Additionally, the denaturing effects of these two rim-forming agents were investigated using the junction of the transmembrane and intracellular domains of the p75 neurotrophin receptor (p75NTR) as a model object. We show that the use of Façades allows decreasing the temperature-dependent growth of bicelles. The ability of Façade-EM-based bicelles to support the native structure and soluble state of the p75NTR intracellular domain was also revealed.
Subject
Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献