Arrangement structure of carbon nanofiber with excellent spectral radiation characteristics

Author:

Yin Jinying1,Han Jiangyue1,Qi Caihui1,Wang Yan1

Affiliation:

1. School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology , 52 Xuefu Road , Harbin , 150080 , China

Abstract

Abstract To explore the spectral radiation characteristics of carbon nanofibers, a finite-difference time-domain method has been applied to study and calculate the scattering/absorption factors of carbon nanofibers with various arrangements, while the filler contents are 61.15%, 53.81%, 48.92%, 44.03% and 39.13% in the spectrum band of 2.5–15 µm. The effects of the nanofiber content, 2D/3D random arrangement and nanofiber radius on scattering/absorption characteristics have been analyzed. The analytical results show that the spectral radiation characteristics of carbon nanofibers have been significantly increased with an increase in the filler content. When the nanofiber content reduced to 48.92%, the random arrangement structure of carbon nanofiber plays an essential role in determining the spectral radiation characteristics. Analytical results prove that the prediction accuracy has been significantly improved by 30.12% by sing the 3D random arrangement model than by using the 2D uniform arrangement model. This study proposed a 3D model to predict the spectral radiation characteristics of carbon nanofibers and their aggregates in engineering nanocomposites.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3