Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications

Author:

Wang Su-Xi,Yap Chin Chong,He Jiating,Chen Chao,Wong Siew Yee,Li Xu

Abstract

AbstractOver the last few decades, the excess exploitation of our planet and degradation of environment have gone up at an alarming rate. Environmental problems, especially air and water pollution, which takes a huge number of years to recover, have become the major concern affecting the progress of human society. The overwhelming threats have driven global research and innovation in the development of advanced technology and devices toward a cleaner environment. In this context, the generation of functional one-dimensional (1-D) nanomaterials has become an area of intense interest from both academia and industry due to their unique advantages for environmental applications. Electrospinning is recognized as the most powerful technique for producing 1-D composite nanofibers via facile incorporation of active ingredients in the solutions for electrospinning or by some posttreatment process. In this review, we give an overview on the latest research progress in the fabrication and utilization of functional polymer/ceramic/carbon nanofibers generated by electrospinning for air and water purification, as well as their applications as sensors for pollutant monitoring and control. We also present the perspectives and challenges of the current electrospinning technique for environmental applications.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Reference202 articles.

1. Electrospun polyurethane fibers for absorption of volatile organic compounds from air Inter;Scholten;Appl Mater,2011

2. Sorption of malachite green on vinyl - modified mesoporous poly ( acrylic acid SiO composite nanofiber membranes Microporous Mesoporous;Xu;Mater,2012

3. Nie Complete decomposition of formaldehyde at room temperature over a platinum - decorated hierarchically porous electrospun titania nanofiber mat;Yu,2014

4. Nanofibrous chitosan non - wovens for filtration applications;Desai;Polymer,2009

5. ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes a;Panthi;review Ind Eng Chem

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3