Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes

Author:

Ahmad Mohammad Asraf Alif1,Mohd Jamir Mohd Ridzuan1,Abdul Majid Mohd Shukry1,Refaai Mohamad Reda A.2,Meng Cheng Ee3,Abu Bakar Maslinda1

Affiliation:

1. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Perlis , Malaysia

2. Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University , Al-Kharj , 16273 , Saudi Arabia

3. Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Perlis , Malaysia

Abstract

Abstract The damage self-sensing and strain monitoring of glass-reinforced epoxy composites impregnated with graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) were investigated. Hand lay-up and vacuum bagging methods were used to fabricate the composite. Mechanical stirrer, high shear mixer, and ultrasonic probe were used to mix the nanofiller and epoxy. The loadings of the nanofiller used were 0.5, 1.5, 3, and 5 wt%. The specimens were tested using in situ electromechanical measurements under mechanical tests. The results show that the type and weight content of the nanofiller affect the electrical properties, damage self-sensing behaviour, and mechanical properties of the composites. The electrical conductivity of the GNP-glass and MWCNT-glass composites increased with nanofiller content. The tensile and flexural strengths of the composite improved with the addition of GNP and MWCNT nanofillers from 0.5 to 3 wt%. The 3 wt% nanofiller loading for GNP and MWCNT produces better mechanical–electrical performance. Field emission scanning electron microscopy revealed the dispersion of GNP and MWCNT nanofillers in the composites.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3