Chemically reactive Maxwell nanoliquid flow by a stretching surface in the frames of Newtonian heating, nonlinear convection and radiative flux: Nanopolymer flow processing simulation

Author:

Nasir Muhammad1,Waqas Muhammad2,Anwar Bég O.3,Basha D. Baba4,Zamri N.1,Leonard H. J.3,Khan Ilyas5

Affiliation:

1. Faculty of Informatics and Computing, University Sultan Zainal Abidin (Kampus Gong Badak) , Kuala Terengganu , Terengganu 21300 , Malaysia

2. NUTECH School of Applied Science and Humanities, National University of Technology , Islamabad 44000 , Pakistan

3. Multi-Physical Engineering Sciences Group, Mechanical Engineering, Salford University, School of Science, Engineering and Environment (SEE) , Manchester , M54WT , United Kingdom

4. Department of Information Sciences, College of Computer and Information Sciences, Majmaah University , Al-Majmaah , 11952 , Saudi Arabia

5. Department of Mathematics, College of Science Al-Zulfi, Majmaah University , Al-Majmaah 11952 , Saudi Arabia

Abstract

Abstract The effects of a chemical reaction and radiative heat flux in a nonlinear mixed thermo-solutal convection flow of a viscoelastic nanoliquid from a stretchable surface are investigated theoretically. Newtonian heating is also considered. The upper-convected Maxwell (UCM) model is deployed to represent the non-Newtonian characteristics. The model also includes the influence of thermal radiation that is simulated via an algebraic flux model. Buongiorno’s two-component nanofluid model is implemented for thermophoretic and Brownian motion effects. Convective thermal and solutal boundary conditions are utilized to provide a more comprehensive evaluation of temperature and concentration distributions. Dimensionless equations are used to create the flow model by utilizing the appropriate parameters. The computed models are presented through a convergent homotopic analysis method (HAM) approach with the help of Mathematica-12 symbolic software. Authentication of HAM solutions with special cases from the literature is presented. The impact of various thermophysical, nanoscale and rheological parameters on transport characteristics is visualized graphically and interpreted in detail. Temperatures are strongly enhanced with Brownian motion and thermophoresis parameters. Velocity is boosted with the increment in the Deborah viscoelastic number and mixed convection parameter, and the hydrodynamic boundary layer thickness is reduced. A stronger generative chemical reaction enhances concentration magnitudes, whereas an increment in the destructive chemical reaction reduces them and also depletes the concentration boundary layer thickness. Temperature and concentration are also strongly modified by the conjugate thermal and solutal parameters. Greater radiative flux also enhances the thermal boundary layer thickness. Increasing the Schmidt number and the Brownian motion parameter diminish the concentration values, whereas they elevate the Sherwood number magnitudes, i.e. enhance the nanoparticle mass transfer rate to the wall.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3