Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites

Author:

Nazrin Asmawi1,Sapuan Salit Mohd12,Zuhri Mohamed Yusoff Mohd12,Tawakkal Intan Syafinaz Mohamed Amin3,Ilyas Rushdan Ahmad4

Affiliation:

1. Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

2. Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

3. Department of Process and Food Engineering, Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia

4. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia , 81310 Johor Bahru , Johor , Malaysia

Abstract

Abstract The disposal of non-biodegradable synthetic plastic wastes is linked with air, land, and marine pollutions. Incineration of plastic wastes released toxic substances into the air while recycled plastics end up accumulated in landfill and dumped into the ocean. In this study, novel sugar palm starch reinforced with sugar palm crystalline nanocellulose was blended with poly(lactic acid) (PLA) with various formulations to develop alternative materials potentially substituting conventional plastics. X-ray diffraction analysis demonstrated broad amorphous scattering background with minor diffraction peaks at 2θ of 19.4° and 22° associated with VH-type and B-type crystal structure for all blend bionanocomposites samples. Higher solubility rates were observed for PLA20TPS80 (96.34%) and PLA40TPS60 (77.66%) associated with higher concentration of plasticizers providing extra space in the polymer chains to be penetrated by water molecules. Increasing PLA content was not necessarily enhancing the water vapor permeability rate. Dynamic mechanical analysis presented a significant increment in storage modulus (E′) for PLA60TPS40 (53.2%) compared to the trivial changes of PLA70TPS30 (10%) and PLA80TPS20 (0.6%). However, significant improvement in impact strength occurred only at PLA40TPS60 (33.13%), and further addition showed minor improvement between 12 and 20%. Overall, it is noted that PLA60TPS40 demonstrated adequate functional properties to be used in food packaging application.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3