Berberine/Ag nanoparticle embedded biomimetic calcium phosphate scaffolds for enhancing antibacterial function

Author:

Hu Cheng1,Wu Lina2,Zhou Changchun2,Sun Huan2,Gao Peng1,Xu Xiujuan2,Zhang Chenxi1,Liang Jie2,Fan Yujiang2,Sun Jianxun1,Zhou Xuedong1,Zhang Xingdong2

Affiliation:

1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041 , China

2. National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China

Abstract

Abstract In the past decade, biomimetic calcium phosphate (CaP) ceramics have been considered as practicable grafts and biomaterial substitutes in repairing jaw bone defect after tumor resection or traffic accident. Nowadays, increasing incidence of biomedical material-associated infection has raised a concern when applying these materials. In this work, a new porous CaP scaffold with antibacterial coating was proposed. This biomimetic scaffold was composited with berberine (BBR), Ag nanoparticles (nAg), and silk fibroin (SF). The microstructures and phase composition of the scaffolds were analyzed. The cytocompatibility and osteogenic potential of the prepared samples were evaluated in vitro. The scaffolds held hierarchical structure: the first-level porous CaP ceramic with micron pores ranged from 250 to 600 µm; the second-level spongy-like structure with abundant capillary pores ranged from 500 nm to 10 µm; and the third-level structure was achieved by filling BBR, nAg, and SF gel coatings into the above porous structures. The experimental results showed that the antimicrobial capability of single BBR coating is inconspicuous. However, the introduction of nAg could significantly promote the antibacterial effect of scaffolds. At the same time, such scaffolds showed improved osteoinductivity. This new biomimetic CaP scaffold with antibacterial and osteoinductive properties may be a promising candidate for bone tissue engineering.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3