An acoustic teaching model illustrating the principles of dynamic mode magnetic force microscopy

Author:

Reimer Mario1,Niemeier Sybille2,Laumann Daniel1,Denz Cornelia2,Heusler Stefan1

Affiliation:

1. 1Institute of Physics Education, University of Münster, Münster, Germany

2. 2MExLab Physik and Institute of Applied Physics, University of Münster, Münster, Germany

Abstract

AbstractMagnetic force microscopy (MFM) represents a versatile technique within the manifold methods of scanning probe microscopy (SPM), focusing on the investigation of magnetic phenomena at the nanoscale. Although magnetism is a fundamental element of physics education, educational content at the cutting edge of actual scientific topics and techniques in magnetism, like MFM, is lacking. Therefore, we present a scaled teaching model imparting the core principles of MFM, implementing a macroscopic model operating in dynamic mode. The experimental configuration of the model is based on popular bricks by LEGO and drivers based on LEGO Mindstorms (Lego, Billund, Denmark), as well as on further off the shelf components being easily accessible for schools and universities. Investigations of macroscopic magnetic structures reveal numerical, visual and auditory information based on magnetic forces between an oscillating cantilever and ferromagnetic samples allowing a sensual experience of force microscopy for students. Along these lines, students obtain multiple representations to study the precision measurement process of SPM in general and MFM in particular at a scale that allows experiencing micro- and nanoscopic effects. The magnetic force gradients and spatial resolution of the macroscopic model are in agreement with those of an authentic microscopic magnetic force microscope.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Reference56 articles.

1. Construction and interference in learning from multiple representation;Learn. Instr.,2003

2. Learning the core ideas of scanning probe microscopy by toy model inquiries;Nanotechnol. Rev.,2013

3. Relevance of practical work to comprehension of physics;Phys. Educ.,1979

4. Optimization of thin-film tips for magnetic force microscopy;IEEE T. Magn.,1994

5. A typology of school science models;Int. J. Sci. Educ.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A LEGOTM dynamic force “macroscope”;American Journal of Physics;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3