Microwave-assisted sol–gel template-free synthesis and characterization of silica nanoparticles obtained from South African coal fly ash

Author:

Imoisili Patrick Ehi1,Jen Tien-Chien1

Affiliation:

1. Mechanical Engineering Science department, University of Johannesburg, Johannesburg , Kingsway and University Road, Auckland Park, 2092, P. O. Box 524, Auckland Park, 2006 , Johannesburg , South Africa

Abstract

Abstract In this study, we prepared a silica nanoparticle from South African fly ash (SAFA), using a facile microwave (MW)-assisted sol–gel template free syntheses method. Prepared silica nanoparticles (SNPMW) were characterized using X-ray fluorescence (XRF) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transition electron microscope (TEM), Brunauer–Emmett–Teller (S BET) surface area analysis, and ultraviolet visible diffuse reflection spectroscopy. XRF analysis suggests SAFA as fly ash class F. The XRD pattern reveals the structural composition of SAFA and the amorphous nature of extracted SNP, while the FTIR assay shows the presence of silanol and siloxane groups. SEM and TEM analyses revealed primary silica nanoparticles were roughly spherical with sizes of about <200 nm. EDX spectra confirm the presence of SiO2. The optical bandgap of SNPMW was established to be 4.67 eV. The application of SNPMW demonstrated that it can be used to remove Pb2+ from an aqueous solution. Test results show the optimum treatment time as 60 minutes, while removal efficiency increases from 66.76 to 96.64% as the pH rises from 3 to 5, but as the pH rises above 5, the efficiency decreases. The use of an MW-assisted sol–gel preparation method gave rise to an elevated reaction rate with minimal contamination and thinner particle size SNPMW, which was utilized for the removal of Pb2+ in an aqueous solution.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3