Biogenic synthesis of palladium nanoparticles: New production methods and applications

Author:

Law Cindy Ka Y.12,Bonin Luiza12,De Gusseme Bart12,Boon Nico12,Kundu Kankana12

Affiliation:

1. Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Gent , Belgium

2. Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE) , P.O. Frieda Saeysstraat 1 , B-9000 Gent , Belgium

Abstract

Abstract The palladium (Pd)-catalysed reaction has attracted much attention, making Pd the most valuable of the four major precious metals. Several different forms of Pd can be used as a catalyst; nanoparticles (NPs) have the advantage of a high surface area:volume ratio. Since the chemical production of Pd NPs is not environmentally friendly, biological synthesis interest has grown. However, the production mechanism remained unknown in several cases and was recently described for the electroactive bacterium Shewanella oneidensis MR-1. The application of these green synthesised NPs was established in different fields. This review discusses the production pathway and the novel biological-inspired methods to produce tailored biogenic palladium nanoparticles (bio-Pd NPs), with their broad application fields as biogenic nanocatalysts. Two significant applications – reductive bioremediation of persistent organic contaminants and energy-producing microbial fuel cells – are discussed in detail. The current challenges in optimising bio-Pd NPs production and the potential research directions for the complete utilisation of its novel catalytic properties are highlighted.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3