Preparation of efficient piezoelectric PVDF–HFP/Ni composite films by high electric field poling

Author:

Lei Dan1,Hu Ning12,Wu Liangke1,Huang Rongyi1,Lee Alamusi2,Jin Zhaonan1,Wang Yang1

Affiliation:

1. College of Aerospace Engineering, Chongqing University , Chongqing 400044 , China

2. State Key Laboratory of Reliability and Intelligence Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology , Tianjin 300401 , China

Abstract

Abstract Poly(vinylidene fluoride) (PVDF) and its copolymers have been widely studied due to their excellent piezoelectricity and ferroelectricity. In this study, composite films are prepared by adding Ni nanoparticles (0.00–0.3 wt%) into poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) matrix by solution casting, uniaxial stretching, and high electric field poling. It is found that when the maximum electric field E max for poling is 130 MV m−1, the calibrated open circuit voltage of the pure PVDF–HFP films reaches 3.12 V, which is much higher than those poled by a lower electric field (70 MV m−1: 1.40 V; 90 MV m−1: 2.29 V). This result shows that the effect of poling on the generated output voltage is decisive. By adding 0.1 wt% Ni nanoparticles, it increases to 3.84 V, 23% higher than that of the pure PVDF–HFP films. To further understand the enhancement mechanism, the effects of Ni nanoparticles on initial crystallization, uniaxial stretching, and high electric field poling are investigated by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3