Band gap manipulation of viscoelastic functionally graded phononic crystal

Author:

Bian Zuguang1,Yang Shuai2,Zhou Xiaoliang2,Hui David3

Affiliation:

1. Department of Civil Engineering, School of Civil Engineering and Architecture, Taizhou University , Taizhou , 318000 , China

2. Department of Civil Engineering, School of Civil Engineering and Architecture, Anyang Normal University , Anyang , 455000 , China

3. Department of Mechanical Engineering, University of New Orleans , New Orleans , LA 70148 , United States of America

Abstract

Abstract In this study, band gaps of SH-waves (horizontally polarized shear waves) propagating in a thermal-sensitive viscoelastic matrix are investigated. Metallic films acting as heat sources are periodically embedded into the matrix, which establishes a periodically inhomogeneous thermal field. The homogenous matrix is therefore transformed into functionally gradient phononic crystals (PCs). A three-parameter solid model is employed to describe the viscoelasticity of the present matrix. By virtue of a transfer matrix method incorporated within a laminated model, the dispersion equation of SH-waves is finally obtained, from which the band gaps are determined. The transmission spectra of a finite-periodic PC are also solved to validate the band gaps. In numerical examples, the influences of incident angles of SH-waves and viscoelasticity of matrix on band gaps are discussed first. Then the research focuses on the means to tune the band gaps by manipulating the inputted powers of heat sources. Numerical examples demonstrate that such a strategy is effective and convenient in tuning the positions and widths of band gaps. A viscous parameter, i.e., the ratio of initial-state to final-state storage moduli, significantly affects the band locations and bandwidths, while the locations of low-order band gaps hardly move with the incident angle of SH-waves. Band gaps of several orders are expected to locate in lower-frequency domain, and the total bandwidth becomes larger as the inputted heat flux increases. This paper lays theoretical foundation to manufacture viscoelastic functionally graded PCs which can be used in frequency-selective devices.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3