Genetic mechanisms of deep-water massive sandstones in continental lake basins and their significance in micro–nano reservoir storage systems: A case study of the Yanchang formation in the Ordos Basin

Author:

Liao Jianbo123,Xi Aihua1,Liang Sujuan2,Zhou Xinping4,Li Zhiyong23,Di Jun2,Zhang Wenting2,Wanyan Rong2,Yu Pinghui2

Affiliation:

1. School of Geoscience and Technology , Southwest Petroleum University , Chengdu , 610500 , China

2. Research Institute of Petroleum Exploration and Development Northwest Branch , Lanzhou , 730020 , China

3. Key Laboratory of Reservoir Description , CNPC , Lanzhou , 730020 , China

4. Exploralion & Development , PetroChina Changqing Oil field Company , Xi’an , 710018 , China

Abstract

Abstract Based on field geological surveys of two deep-water sedimentary outcrops in the Yanchang formation of the Ordos Basin, X-ray diffraction analysis, elemental geochemical analysis, and polarizing microscope observations were conducted to investigate the causes of various sedimentary structures inside the massive sand bodies from deep-water debris flow. A genesis model of deep-water debris-flow sandstone is established: during the handling of the mass transport complexes in the basin slope, the soft sandy sedimentary layer with relatively strong shear resistance tears the soft muddy sedimentary layer with weak shear resistance and pulls various clumps inside the muddy layer. Finally, debris-flow massive sandstones with rich sedimentary structures are formed. Through argon ion polishing and field emission scanning electron microscopy, the debris-flow sandstones mainly develop micron-scale pores, and the pore radius is mainly distributed in the range of 1–8 µm. The sedimentary rocks from the semi-deep lake to deep lake facies only have a small number of nano-scale pores, and the pore radius is distributed between 20 and 120 nm.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3