Reduced graphene oxide coating on basalt fabric using electrophoretic deposition and its role in the mechanical and tribological performance of epoxy/basalt fiber composites

Author:

Mittal Garima1,Lee Sang Woo1,Rhee Kyong Y.1

Affiliation:

1. Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University , Yongin 446-701 , Republic of Korea

Abstract

Abstract The interfacial bonding between the fiber and matrix plays a pivotal role in deciding the mechanical performance of fiber-reinforced composites. Basalt fibers, due to the absence of surface functional groups, do not interact potentially with the matrix and hence it leads to insufficient load-carrying capacity of the composite. Incorporating nanomaterials in the matrix and surface treatment of the reinforced fiber can improve the fiber–matrix interface. However, poor dispersion of nanomaterials and the complexity of surface treatment methods restrict their industrial applications. Coating nanomaterials directly onto the fiber surface has the potential to distribute the nanomaterials uniformly, along with strengthening the interfacial bonding between the fiber and matrix. In this study, graphene oxide was coated on the basalt fabric through electrophoretic deposition (EPD), and was further reinforced into the epoxy matrix. The aim of this study is to examine the effects of graphene oxide-coated basalt fiber using EPD on the mechanical and tribological performance of the composite. For comparison, epoxy/basalt composites and graphene oxide-coated epoxy/basalt composites were also prepared. Results showed that due to the improved fiber–matrix bonding and uniform distribution of graphene oxide, the coated basalt-reinforced composites showed better tensile strength and less wear loss.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3