Recent progress in nanomaterials of battery energy storage: A patent landscape analysis, technology updates, and future prospects

Author:

Motalib Hossain M. A.1,Ker Pin Jern2,Tiong Sieh Kiong1,Indra Mahlia T. M.3,Hannan M. A.24

Affiliation:

1. Institute of Sustainable Energy, Universiti Tenaga Nasional , Kajang , 43000 , Malaysia

2. School of Engineering and Technology, Sunway University, Bandar Sunway , Petaling Jaya , 47500 , Malaysia

3. School of Civil and Environmental Engineering, University of Technology Sydney , Ultimo , NSW 2007 , Australia

4. School of Electrical Engineering, Korea University , Seongbuk-Gu , Seoul , 136-701 , Republic of Korea

Abstract

Abstract The world’s energy demand has significantly increased as a result of the growing population and accompanying rise in energy usage. Fortunately, the innovation of nanomaterials (NMs) and their corresponding processing into devices and electrodes could enhance the functionality and/or advancement of the current battery energy storage systems (BESSs). Patent landscape analysis (PLA) can offer a comprehensive overview of technological development trends and enable discussion in interdisciplinary areas that facilitate more rational technology planning in the future. In this study, PLA of recent advancements in the NM-based BESS was critically analyzed, future technologies forecasted, and potential challenges outlined. A search was performed in the Lens database using “energy storage system,” “battery,” and “nanomaterial,” and related patents under the simple family were extracted. Finally, after excluding duplicates and irrelevant patents, a total of 89 patents were selected for analysis using various parameters. The article provides a current technical overview along with an extensive bibliographic review of the patent family, trends of patent growth, key inventors and owners, patent legal status, patent jurisdiction, top cited patents, etc., as well as technological updates. Overall, nanotechnology has great potential for the future; however, further research and studies are necessary to accelerate the widespread usage of NMs in energy storage systems using cost-effective and environmentally friendly technologies.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3