Multi-scale modeling of the lamellar unit of arterial media

Author:

Mozafari Hozhabr1,Wang Lulu2,Lei Yuguo3,Gu Linxia4

Affiliation:

1. Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America

2. College of Health Science and environmental Engineering, ShenZhen Technology University, ShenZhenChina

3. Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska-LincolnUnited States of America

4. Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, FloridaUnited States of America

Abstract

AbstractThe heterogeneity of the lamellar unit (LU) of arterial media plays an important role in the biomechanics of artery. Current two-component (fibrous component and a homogenous matrix) constitutive model is inappropriate for capturing the micro-structural variations in the LU, such as contraction/relaxation of vascular smooth muscle cells (VSMCs), fragmentation of the elastin layer, and deposition/disruption of the collagen network. In this work, we developed a representative volume element (RVE) model with detailed micro-configurations, i.e., VSMCs at various phenotypes, collagen fibers, and elastin laminate embedded in the ground substance. The fiber architecture was generated based on its volume fraction and orientations. Our multi-scale model demonstrated the relation between the arterial expansion and the micro-structural variation of the lamellar unit. The obtained uniaxial response of the LU was validated against the published experimental data. The load sharing capacity of fibrous component and VSMCs of the LU were obtained. We found that the VSMC could take 30% of the circumferential load when contracted until the collagen fibers were recruited, while this value was less than 2% for the relaxed VSMC. In addition, the contribution of collagen fibers at low stretch levels was negligible but became predominant when straightened in high stretches.Moreover, aging effects by collagen deposition was modeled to estimate the arterial stiffening. It was revealed that the aortic stiffness is mainly controlled by collagen fibers, instead of VSMCs. Our findings could shed some light about the contribution of VSMCs in arterial stiffness which has been under debate in recent years.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3