Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita

Author:

Khan Masudulla1,Siddiqui Zaki A.2,Parveen Aiman2,Khan Azmat Ali3,Moon Il Soo4,Alam Mahboob5

Affiliation:

1. Botany Section, Women’s College, Aligarh Muslim University , Aligarh 202002 , India

2. Department of Botany, Aligarh Muslim University , Aligarh 202002 , India

3. Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh , 11451 , Saudi Arabia

4. Department of Anatomy, Dongguk University College of Medicine , Gyeongju , 38066 , Republic of Korea

5. Department of Safety Engineering, Dongguk University , 123 Dongdae-ro , Gyeongju , Gyeongbuk, 780714 , Republic of Korea

Abstract

Abstract Nanoparticles (NPs) have a critical function in mitigating the disease of fruits and vegetables. In the present investigation, the effects of three levels of concentrations (0.05, 0.10, and 0.20 mg/mL) of titanium dioxide NPs (TiO2-NPs) and silicon dioxide NPs (SiO2-NPs) were investigated against fungus Phomopsis vexans, bacterium Ralstonia solanacearum, and Meloidogyne incognita (root-knot nematode). The present investigation’s findings found that the application of SiO2-NPs was more efficient against test pathogens in comparison to TiO2-NPs. The best result produced by SiO2-NPs against pathogenic strain was used in the molecular docking investigation with the protein of R. solanacearum to better understand the interaction of active amino acids with SiO2-NPs. The obtained results revealed that the administration of 0.20 mg/mL foliar spray of SiO2-NPs in plants with M. incognita improves up to 37.92% of shoot dry weight and increases 70.42% of chlorophyll content. P. vexans growth was suppressed by 41.2% with 0.62 mm of inhibition zone when SiO2-NPs were given at a dosage of 0.20 mg/mL. The reductions in egg hatching and M. incognita (J2) mortality were greater in SiO2-NPs than in TiO2-NPs. The results of scanning electron microscopy confirmed that the application of both NPs harmed test pathogens. The confocal study also showed the penetration of NPs among test pathogens.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3