On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid

Author:

Sun Li1,Wang Geng1,Zhang Chunwei2,Jin Qiao1,Song Yansheng1

Affiliation:

1. School of Civil Engineering, Shenyang Jianzhu University , Shenyang , China

2. School of Civil Engineering and Architecture, Hainan University , Haikou , China

Abstract

Abstract This study examines the rheological properties of shear thickening fluid (STF) enhanced by additives such as multi-walled carbon nanotubes (MWCNTs), polyvinylpyrrolidone (PVP), and nano-silica (SiO2) at different mass fraction ratios. The rheological properties of the liquid (MWCNTs–PVP/SiO2–STF) and the effect of the rheological properties of the STF under different plate spacing of the rheometer were investigated. The optimal mass fraction mixing ratio was also studied. The MWCNTs–PVP/SiO2–STF system with different PVP mass fractions was fabricated using ultrasonic technology and the mechanical stirring method. Then, the steady-state rheological test of the MWCNTs–PVP/SiO2–STF system was carried out with the aid of the rheometer facility. Dynamic rheological and temperature sensitivity tests on the MWCNTs–PVP/SiO2–STF system with 0.1 and 0.15% PVP mass fractions were performed. The rheological test results show that the MWCNTs–PVP/SiO2–STF system has a significant shear thickening effect when the PVP mass fraction is increased from 0 to 0.15%. When the PVP mass fraction is 0.1% and the plate spacing is 1 mm, the system exhibits the best shear thickening performance. This is based on the following facts: the viscosity can be achieved as 216.75 Pa s; the maximum energy storage and energy consumption capabilities can be observed. As a result, PVP can significantly enhance the shear thickening performance of the MWCNTs/SiO2–STF system.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3